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Semiclassical calculations are carried out by two methods for the problem of 
collision-induced predissociation of electronically excited 12. The first method is 
that of  surface-hopping with the Landau-Zener model. The second method is 
similar to surface-hopping, except that analytic continuation of the adiabatic 
potential energy surfaces replaces the Landau-Zener model. Results of the calcula- 
tions by the two methods compare favorably with each other and with experiment. 
The possible advantages of the second method are discussed. 
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1. Introduction 

There is increasing theoretical interest in treating atom-diatom and ion-diatom collision 
processes which involve the coupling of two or more potential energy surfaces [1 ]. 
Although a fully quantum mechanical calculation is the most rigorous approach [2, 3], 
semiclassical calculations can often yield accurate results [4, 5]. The semiclassical 
approach is more appealing than the quantum approach in two ways: 1) it is generally 
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easier to apply, and 2) it presents a simpler and clearer picture of the collision dynamics 
and hence lends more physical insight into the mechanism of switching surfaces. The 
main feature of the semiclassical approach is the assumption that nuclear degrees of free- 
dom behave classically 1. With a quantum description for the electronic degrees of 
freedom, the nuclei then follow classical trajectories on potential energy surfaces. While 
popular semiclassical theories all follow this procedure, they tend to differ with respect 
to the manner in which a trajectory makes a transition between surfaces. 

In this paper we shall report on a comparative study of two such theories, one by Tully 
and Preston [6] and the other by Miller and George [7]. Tully and Preston define their 
theory to be a phenomenological extension of the standard (single surface) classical 
trajectory approach to a treatment of molecular collisions involving electronically non- 
adiabatic interactions. Within their approach a trajectory makes an electronic transition 
by "hopping" discontinuously from one surface to another. The theory of Miller and 
George, derived more rigorously, is somewhat more difficult to implement since it 
involves the integration of full complex,valued trajectories [8] on surfaces analytically 
continued to their complex intersection points, whereby trajectories switch surfaces 
smoothly at these points. Recently, a simplification to this theory has been introduced 
[4, 9],  which no longer requires the integration of complex-valued trajectories, but 
rather real-valued trajectories which switch surfaces discontinuously as in the theory of 
Tully and Preston. However, the switching amplitude is still calculated by means of 
analytic continuation of surfaces to complex intersection points, in the spirit of 
StuecNelberg's approach [10]. On the other hand, this amplitude (or probability) is 
calculated by Tully and Preston using quantities defined on the real axis alone, such 
as by the Landau-Zener [11, 12]. 

The format of the paper is the following. In Sect. 2 we outline the surface-hopping 
method of Tully and Preston. In Sect. 3 we outline the approach of Miller and George, 
both in its original form and in its more recent simplified form. In Sect. 4 we compare 
calculations and results, for the approaches presented in Sects. 2 and 3, on a two-surface 
model for collision-induced predissociation of electronically excited 12. Sect. 5 is the 
Conclusion. 

2. Surface-Hopping Method and Landau-Zener Model 

The surface-hopping model was introduced by Tully and Preston [6] as a means of using 
classical trajectories to describe molecular collision dynamics involving the coupling of 
two surfaces. We consider two electronically adiabatic surfaces of an atomrdiatom 
system which exhibit an avoided crossing in some region of nuclear configuration space. 
Labelling these surfaces as 1 and 2, we then consider a collision process involving a transi- 
tion from 1 to 2. We begin the integration of a classical trajectory on surface 1 and 
propagate up to the avoided crossing, where the trajectory splits into two branch 
trajectories. The "upper" branch proceeds on surface 2 while the "lower" branch proceeds 
on surface 1. The upper branch is created by a local electronic transition, wherein the 

1 Sometimes it is more appropriate to treat only certain nuclear degrees of freedom classically, while 
the rest are handled quantum mechanically. See Ref. [4]. 
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nuclear coordinates are continuous. However, there is a discontinuity in nuclear kinetic 
energy equal to the energy difference between the surfaces at the transition point. Since 
there are two or more nuclear degrees of  freedom, there is no unique way to redistribute 
this energy difference among the various components of  nuclear momentum on surface 2. 
However, Tully and Preston followed a reasonable (and perhaps best) procedure whereby 
this energy difference went entirely into the component  of  nuclear velocity which is 
perpendicular to the avoided crossing seam, which we call v• 

In order to conserve total probability at the transition point, the upper branch trajectory 
is weighted by a probability factor p while the lower branch proceeds with a probability 
1 - p. The factor p can be calculated in various ways, although in most applications it 
has been determined by the kandau-Zener model (as used in the calculation discussed 
in Sect. 4) and is given as 

p = exp ( - 2 z r A 2 / ~ B v •  (1) 

where A and B are parameters which we shall assign in Sect. 4. A given branch can split 
into other branches as it encounters the avoided crossing seam, so that an overall weight 
factor for a trajectory with a specific "branching pat tern" will be a product of  factors, 
e.g., p i p 2 ( 1  - Pa) �9 �9 where the subscript labels the particular transition point. The 
overall weight factors are then incorporated into a Monte Carlo averaging procedure 
for the initial boundary conditions of  the trajectories. 

3. Method of Analytic Continuation 

Continuing with the atom- diatom (A + BC) collision involving an electronic transition 
between adiabatic surfaces I and 2 with an avoided crossing, we shall summarize the 
results of  the Miller-George theory in its original form [7, 13-16].  For simplicity in 
the rest o f  this paragraph we restrict ourselves to collinear collisions, although tile 
discussion for three-dimensional collisions is straightforward. The quantity of  interest 
is the S-matrix element Sfi,  which is a transition amplitude connecting initial state / 
(initial vibrational state of  BC on surface 1) to final state f (final vibrational state of  
either BC, AB or A C  on surface 2, depending on the particular process under considera- 
tion). This element is expressed as (for a given collision energy) 

Sfi  = ~P 1/2 [27rh(3n 2/3qa )n~ ] -i/2 exp (iReqS/~). (2) 

The initial boundary conditions depend on the quantities n I and qa, where n 1 is the 
integer value of an action variable n and corresponds to the initial vibrational state, 
and qa is the initial value (between 0 and 2zr) of  the angle q conjugate to n. The final 
boundary conditions are similarly specified in terms of n 2 and q2. Re (P is the real part 
of  the complex classical action q5, which is calculated along the trajectory propagating 
from nl, ql to n~, q2 and is expressed as 

~ o  

= - f d t [ R ( t ) p R  ( t)  + q ( t ) h  (t)], (3) 

where R is the distance from the center of  mass of  BC to A and/SRis the time derivative 
of the momentum conjugate to R. P is the probability factor of  the sample form 
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P= PIP2( 1 - P3) . . . .  where Pi is the local switching probability in analogy to that of 
Tully and Preston. The summation is taken over all trajectories (including all branching 
patterns [8, 13], which propagate from nl to n2, where each trajectory corresponds to 
a different value of ql (and likewise a different value of q2). 

The integral of Eq. (3) is carried out in the complex time plane, where the variables in 
the integrand follow a complex-valued classical trajectory. The trajectory propagates 
on surface 1 analytically continued off the real axis to actual intersection points with 

surface 2 (also analytically continued). A transition then occurs smoothly at an inter- 
section point so that nuclear momenta as well as nuclear coordinates are continuous 
through the transition point. In practice the trajectory need not pass through the 
intersection point itself, but must simply go "over" the point. The reason for this is 
that each surface corresponds to a particular branch of a square root function, so 
that an intersection point is equivalent to a branch point and going "over" the point is 
tantamount to crossing a branch cut [17-19]. 

The theoretical advantage which this theory offers over the approach of Tully and 
Preston is that the problem of a discontinuity in a trajectory at a transition point is 
eliminated. However, this is a numerical disadvantage of this theory in that it requires 
the integration of full complex-valued classical trajectories. While we have demonstrated 
the feasibility of such a task (for both collinear and three-dimensional H + + D 2 -+ HD § + 
D involving two surfaces) [8], it is certainly more difficult than the integration of real- 
valued trajectories. To circumvent this difficulty we have introduced a modification to 
the original theory whereby we combine the integration of real-valued trajectories with 
the local analytic continuation of surfaces [5]. In so doing we weaken the original 
theory since our real-valued trajectories now experience discontinuities at transition 
points (i.e., the real parts of the branch points). However, we shall retain the feature of 
analytic continuation since the local switching probabilities will require the analytic 
continuation of surfaces and not the quantum coupling. 

In describing our modification we should point out that it is applicable to the general 
multi-surface problem. The interaction among three (or more) surfaces can be broken 
down into a sum of! local interactions between two surfaces 2 [15, 17]. Although we 
have not derived a general proof of this, our intuition and experience have convinced 
us that within the adiabatic representation there is usually a particular direction in 
nuclear coordinate space along which localized interactions occur between pairs of 
surfaces. This is not necessarily true in adiabatic representation, which is a fundamental 
reason for our choice of the adiabatic representation in the semiclassical theory. 

In a given region where two adiabatic surfaces (which we call W1 and W2) interact, our 
modification begins by representing the potential interaction as the effective surface 
re(x), 

w(x) = wl (X)h [ ;(X)] + W2(X)h[-f(X)l, (4) 

2 In the event that such pairwise interactions overlap, we must introduce appropriate uniformization 
procedures as discussed in Ref. [13]. 



Semicl~ssical Study of Collision-Induced Predissociation 345 

where f (X)  is some function of nuclear coordinates X which is positive (negative) for 
points on the "Wa" ("W2") side of the "surface" defined by f (X)  -- 0 and h [f] is the 
usual Heaviside step function, i.e., h[f] = 1 for f >  0 and h[f] = 0 for f <  0. The 
"surface" defined b y f ( X ) =  0 is traced out by the real parts of the intersection points 
(branch points) connecting W 1 and W 2. We emphasize here that the nuclear coordinates 
X are real in our discussion (provided we have already analytically continued the surfaces 
locally to branch points to find the real "surface" defined by f (X)  = 0). 

Having defined a local effective surface W(X), we then integrate a real-vahied classical 
trajectory on W a up to where f (X )  = 0, at which point is switches surfaces to W 2. The 
prescription for switching surfaces is as folIows. By mapping out the real parts of the 
branch points, we find the direction along which they are localized. This is approximately 
perpendicular to the seam of the avoided crossing. (For situations where there is no 
avoided crossing, there is no seam. However, we can still map out the real parts of branch 
points, so that this procedure does not require an avoided crossing [5] .) If  this direction 
is along the coordinate X (1), then f (X)  = 0 is equivalent to 

X (') = ReX~.I) [X (2), X O) . . . .  , X (N)] (5) 

where Nis  the number of nuclear degrees of freedom (N= 2 for collinear A + BC 
collisions). Depending on the coordinate system under consideration, X (D might be 
some linear combination of coordinates rather than a particular single coordinate. 
X(,1)[X (2), X (3), . . . .  X (N)] is the locus of  complex intersection points along the complex 
X(1)-axis as a function of all the remaining nuclear degrees of freedom. 

When a trajectory reaches the "surface" defined by Eq. (5), we freeze the variables 
X (2), X (3), . . . .  X (N) and their conjugate momenta. We then perform a one-dimensional 
phase integral of the Stueckelberg-like form [10] 

=[" X(*I) + t REX*(1) 

0r .]ReX(,1 ) dX(1)kl ,] x(,1 ) dJ((1)k2 (6) 

where k/is the momentum conjugate to X 0). For example, i f X  (1) is the radial trans- 
lational coordinate, then k i is given as 

x i  = {2u[E  - Wi - eJ } 1/5 (7)  

where/J is the reduced mass of A and BC, E is the total energy and e is the internal 
nuclear energy of BC at the "surface" defined by Eq. (5). For the branch of the 
trajectory which continues on surface 2 we attach the local amplitude pl/2, where 

p = exp ( -2Ima) ,  (8) 

and for the branch which continues on surface 1 we attach the amplitude (1 - p)l12. 
The phase integral of Eq. (6) is calculated along a one-dimensional trajectory in the 
imaginary XO)-direction on surface 1 up to the branch point and then back to the 
real axis on surface 2. This one-dimensional trajectory in the complex plane is the 
solution of just two coupled equations and hence is decoupled from the real-valued 
trajectory which is the solution of 2N coupled equations. However, all coordinates 
and momenta are continuous along both trajectories taken together, where the coordi- 
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nates return to their same values at the end of the one-dimensional trajectory as they 
were at the beginning, and the momentum conjugate to X O) absorbs the change in 
electronic energy while the other momenta  remain unchanged. The real-valued trajectory 
alone experiences a discontinuity along the branch which continues on surface 2. It is 
important to realize that the numerical integrator for the 2N coupled Hamilton's 
equations of  motion involves only real variables: the one-dimensional phase integral 
in the complex plane is simply added as a separate "subroutine".  When a given branch 
of the trajectory encounters again the surface defined by Eq. (5), we repeat the 
switching procedure. 

With this modified theory we can calculate S-matrix elements through Eq. (2) by using 
real-valued trajectories. The imaginary part of  the total action ~ is accumulated in an 
additive fashion from each local contribution, i.e., Imq5 = s where the sum is over 
all points on the surface defined by Eq. (5) at which a trajectory makes a transition 
between surfaces. Since we are no longer integrating full complex-valued trajectories, 
we could alternatively carry out a Monte Carlo calculation in the same fashion as 
Tully and Preston [6]. Although this does not yield rigorous state-selected transition 
ampfitudes as through Eq. (2), it does avoid the need for finding " roo t"  trajectories 
which propagate from an initial to a final state [7, 8]. In the next section we shall 
compare results on a model for collision-induced predissociation from Monte Carlo 
calculations using our modified semiclassical theory and the kandau-Zener model as 
suggested by Tully and Preston. 

4. Calculations and Results 

Calculations were based on a model for collision induced predissociation of electronically 
excited I2 for coltinear collisions, which was previously studied by Garetz, Rubinson 
and Steinfeld [20] using the surface-hopping method and kandau-Zener model. The 
collision system involves 12 in the excited electronic state B3IIOu + in the presence of  
rare-gas atoms. The observed quenching process [21] is assumed to occur due to the 
interaction of  this excited state with other states and in particular with the 0g repulsive 
state which correlates to two ground-state iodine atoms, I(2P3/2) + I(2P3/2).This process 
is 

I2(B 3IIo+, 1)) "1" rare-gas -+ 2I (2P3/2) + rare-gas (8) 

which can be viewed in terms of transitions between two adiabatic surfaces to be dis- 
cussed shortly. While this process involves an overall electronic transition, the process 

v ) rare-gas (9) I2(B 3IIo+, v) + rare-gas -+ I2(B 3IIo+, ' + 

does not involve an overall electronic transition, although it can also be viewed in terms 
of local transitions between two adiabatic surfaces. The potential energy curves corres- 
ponding B 3110+, 0~ states are given by V 1 (r), V2(r ), respectively [20, 22], 

Vl(r ) =De{1 - exp [ -~( r  - re)l} 2 (10) 

V2(r ) = 6.5761 x 10-6/r 9 - 0.34361 (eV) (11) 
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where r is the I - I  intermolecular separation (in a.u.), D e = 0.5444 eV, re = 5.7284 a.u. 
and ~3 = 0.969878 a.u. -x (1 a.u. = 0.59172 x 10 -8 crn). These two diabatic potentials 
cross at r = 6.2752 a.u. The rare-gas collision partner, however, destroys the inversion 
symmetry,  resulting in two electronic states of  the same symmetry  which then interact. 
The presence of  the rare-gas a tom is taken into account through the coupling term 

V12(R) = CR -6, (12) 

where R is the distance from the center of  mass of  12 to the rare-gas a tom and Cis a 
constant given in terms of  quantities such as the ionization potentials of  excited I~ and 
the rare-gas atom, etc., as presented in Ref. [20]. We shall return to this constant 
shortly. 

The two adiabatic surfaces W a and W2, obtained as solutions o f a  2 x 2 secular deter- 
minant, are expressed as 

Wl(r, R) = �89 [Va(r) + V2(r)] - �89 - V2(r)] 2 + 4V~2(R)}l/2 (13) 

W2(r, R) = �89 ) + V2(r)] + �89 ( [Vl(r )  - -  V 2 ( r ) ]  2 + 4V~2(R)}l/2 (14) 

Each surface corresponds to a branch of the square root function { }1/2, and the inter- 
section points (branch points) correspond to the roots of  the equation 

(v l  - v J  +4v 2 = o. (15) 

A map of these roots reveals that the real parts of  the branch points tend to be most 
localized along the r-axis, so that the "surface", or more appropriately the "line", 
corresponding to Eq. (5) is 

r = Re r,(R). (16) 

In Table 1 we list the values of  Rer,  and Imr ,  for values of  R ranging from 20.0 a.u. to 
6.0 a.u., where we see that Re r, is localized around 6.2 a.u. It begins to deviate from 
6.2 a.u. for values of R less than 8.0 a.u.; but for these values of  R, the branch point 
moves far enough in the imaginary direction (e.g., 0.7691i for R = 7.0 a.u.), in which 
case ImA in Eq. (8) is large so that transitions at these branch points are insignificant 
We should point out that the values of  Re r. and Im r. are weakly dependent on the 
imaginary part o f  R; i.e., Table I shows values for I m R  = 0, but similar values are 
found for, say I m R  = 0.1i, 0.2/, etc. 

Integrating trajectories on the surfaces given by  Eqs. (13) and (14) and switching at 
the line of  Eq. (16) via analytic continuation in the manner discussed in Sect. 4, we 
have carried out Monte Carlo calculations for the colfision systems 12 + He, 12 + Ar 
and 12 + Xe. Following the procedure of  Ref. [20], we expressed Cin  Eq. (12) as 

C = -~FIpIQ(Ip + IQ)-I aQ@ (17) 

where Ip and IQ are the ionization potentials of  excited 12 and the rare-gas atom, 
respectively, e O is the ground-state polarizability of  the quencher and @ is the ground- 
state polarizability of  I2. With Cwri t ten in the above manner, F i s  a unitless quantity 
which is equal to the product o f  the Franck-Condon factor and the excited state 
polarizability of  12 divided by a ~ Since neither the Franck-Condon factor nor the 
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R Re r. Imr. 

20.0 6.2752 0.0018 
19.0 6.2752 0.0024 
18.0 6,2752 0.0033 
17.0 6.2752 0.0047 
16.0 6,2752 0.0068 
15.0 6,2751 0.0100 
14,0 6,2751 0.0151 
13.0 6.2749 0.0235 
12,0 6,2745 0,0380 
11.0 6.2731 0.0639 
10.0 6.2687 0.1129 

9.0 6.2527 0.2103 
8.0 6.1884 0.4086 
7.0 5.9402 0.7691 
6.0 5.2487 1.1161 

G. L. Bendazzoli et aL 

Table 1. The complex line of intersection, r , (R) ,  
between the two adiabatic surfaces for the 
12 + Ar system 

excited state polarizability is known experimentally, F was treated as a single para- 
meter to be fitted to experimental data. We performed a few initial test runs with 12 
(v = 25) + Ar to determine the best value of this parameter, which was found to be 
6.5. We then carried out calculations for I~ (v = 43) + He, Ar, Xe where the initial 
vibrational momentum was "quantized" at v = 43. The vibrational phase was chosen 
randomly, and the collision energy was chosen in a Monte Carlo fashion to fit a 
Boltzmann distribution corresponding to the experimental temperature. The resulting 
quenching probabilities are shown in Table 2 along with the experimental results. 
Quenching probabilities are also shown from Ref. [20],  where the surface-hopping 
model was used with the kandau-Zener model via Eq. (1); A = V~2 and B = [dV 1/dr - 

d V 2 / d r  I, where A and B were both evaluated at the avoided crossing. We should point 
out that the value of F was different for the calculations carried out with the Landau- 
Zener method, namely 1.0 (since the ground-state polarizability of 12 is 13.7 No, this 
corresponds to a value of  13.7 A 3 for the product of  the Franck-Condon factor and 
the excited state polarizability, which was incorrectly reported to be 137 •3 in Ref. [201). 
In other words, the determination of  this parameter was taken to be part o f  the method. 
This provides a more global, physical comparison between the method of  analytic 
continuation and the kandau-Zener method than if the same parameter were used in 
both sets of  calculations. However, it would be interesting in the future to see a com- 
parison between the two methods for a given collision system using the same potential 
matrix. 

5. Conclusion 

From the reasonable agreement among the three sets of  results in Table 2, it appears 
that the method o f  analytic continuation provides an accurate as well as interesting 
means for calculating electronic transition probabilities in atom-diatom systems. Since 
the amount of labor involved in implementing this method is comparable to that for 
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Table 2. Quenching probability 
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Semiclassical 
Decoupling Surface-Hopping 
Calculation Calculation 

System (Present Work) (Ref. [20]) Experimental 

Number of 
Trajectories 
(Present Work) 

I2 (v = 43) + He 0.032 0.026 0.027 100 

12 (v = 43) + Ar 0.20 0.16 0.15 100 

I2 (v = 43) + Xe 0.30 0.27 0.45 50 

the surface-hopping method with the kandau-Zener model, we should iterate the 

possible advantages of the method of analytic continuation. First of all, it does not 
require any knowledge of the coupling between surfaces, but simply their analytic 
continuation up to a complex intersection. For the model presented in the previous 

section, this is probably not an advantage, since we know the electronic Hamiltonian 
matrix. However, there might be situations where we have available only the two 
adiabatic surfaces themselves, say, from ab initio calculations, and do not have the 
matrix or non-adiabatic coupling. Secondly, the switching conditions from the method 

of analytic continuation depend on the real parts of the intersection points, and hence 

situations in which there are no avoided crossings are treated in precisely the same 
fashion as for avoided crossings. An example of this is in the F + H2 -+ FH + H reaction 

[1, 23, 24], where the surfaces exhibit an exponential splitting. Although there is no 

avoided crossing, there is still a complex "surface" of intersection whose real part is 

localized along the F + H 2 translational coordinate. 
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